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Chapter 5 The Rate Form of the Equation of State

\

5.1 Introduction

5.1.1 Chapter Overview

In conjunction with the usual rate forms of the conservation equations, the time derivative form of the
Equation of State is investigated from a numerical consideration point of view. By recasting the equation
of state in a form that is 011 equal footing with the system conservation equations, several advantages are
fowul The rate met.;'od is found to be moce intuitive for system analysis, more appropriate for
eigenvalues extraction, as well as easier to program and to implement. Numerically, the rate method is
found [GAR87a] to be more efficient and as accurate than the traditional iterative method.

5.1.2 Leaming Outcomes

Objective 5.1 The student should be able to develop a flow diagram and pseudo-code for the rate
method of the equation of state.

Condition Open book written examination.

• Standard 100%.

Related The rate form of the equation of state.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a

Objective 5.2 The student should be able to develop a computer code implementing the rate method
of the equation of state.

Cundition Workshop or project based investigation.

Standard 100%. Any computer language may be used.

Related "The rilte fonn of the equation of sta~e.

concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a
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Objective 5.3 The student should be able to model a simple thennalhydraulic network using the
integral form of the conservation equations and the rate form of the equation ofstate.
The student should be able to check for reasonableness of the answers.

Condition Workshop or project based investigation.

Standard 100%.

Related Integral form of the conservation equations.
concept(s) Node-li...f1k diagram.

The rate form of the equation of state.

Classitication Knowledge Comprehension Application IAnalysis Synthesis Evaluation

Weight a a a I~

5.1.3 Chapter Layout

First, the derivation of the rate form of the Equation of State is presented. Systematic comparison
between the new method and th~ traditional iterative method is made by applying the methods to a simple
flow problem. The comparison is then extended to a practical engineering problem requiring accurate
prediction ofpressure.

5.2 The Rate Form

Presently, the conservation equations are all cast as rate eyyations whereas the equation of state is
typically written as an algebraic equation [AGE83]. lbis arises from the basic assumption that, although
the properties of mass, momentum and energy must be traced or solved as a function of time and space.
the corresponding local pressure is a pure function of the local Slate of the fluid. Hencc the equation of
state is considered only as a constitutive equation. 1b.is treatment puts the pressure determinations on the
same level as heat transfer coefficients. Although numerical solution of the resulting equation sets give
correct answers (to V\-ithin the accuracy of the assumption), intuition is not generated and time-consuming
iterations must be performed to get a pressure consistent with the local state parameters.

The time deri\-"ative form of the Equation of State is investigated, herein, in conjunction with the usual
rate forms of the conservation equations. TIlls gives an equation set with two distinct advantages over
the use (lfalgebraic form of the Equation of State normally used.

The [lIst advantage is that the equation set used consists of four equations for each node or point in
spac~, characterizing the four main actors: mass, flow, energy and pressure. This consistent formulation
permits the straight-forward extraction of the system eigenvalues (or characteristics) without having to
solve the equations numerically. Theoretical analysis of this aspect is given in appendix 5.

The second advant<:.ge is that the rate form of the Equation of State permits the numerical calculation of
the pressure without iteration. The calculation time for the pressure was found to be reduced by a factor
of more than 20 in some cases (where the flow was rapidly varying) and, at worst, the rate fonn was no
slower than the algebraic form. In addition, because the pressure can be explicitly expressed in terms of
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slJwly varying system parameters and flow, an implicit numeric scheme is easily formulated and coded.
,,~~ 11J.is chapter will concentrate on this numerical aspect of the equation of state.

The equation of state has been discussed in chapter 4 where we saw that the determination ofpressure
from known values of other thermodynamic properties is not direct. Interpolation and iteration is required
because the independent {known) parameters are temperature, T, and pressure, P. Unfortunately, T and P
ar~ rarely the independent parameters in system dynamics since the numerical solution of the
conservation equations yield mass and energy as a function of time. Hence, from the point of view of the
equation of state, it is mass and energy which are the independent parameters. Consequently, system
codes are hampered by the ferm ofwater property data.

Having derived the desired rate forms for the equation of state in chapter 4, we proceed to illustrate the
utility of the approach.

5.3 Numerical Inve~tigations: a Simple Case

The simple two-node, one-link system is (Figure 5.1) chosen to il!ustrate the effectiveness of the rate
form of the equation of state in eliminating the in:ter iteration loop in thermalhydraulic simulations. In
general, the task is to solve the matrix equation,

au
=Au+b (I)

at

over the time domain of interest. The key point that we wish to di scuss is the difference in the normal
method (where u = {M

"
H,. W, M" H,}) and the rate method (where u = {M

"
H" P" W, M" H" P,}).

For simplicity and clarity, we first summarize work for a fixed time step Euler integration:
U

,
•
dt = "t + Llt[Au + b] (2)

As we shall see, this is sufficient to generate some observations on the utility of the rate method. These
observations then guide us in the use of more complicated and efficient algorithms.

5.3.1 Normal Method

The normul method obtains the value ofpressure at time, t+Llt, from an iteration (as discussed
previously) on the equation of state using the values of mass and enthalpy at time, t+Llt, i.e. the new
pressure must satisfy:

p ••d• = fu(p"dl, h t • d.) (3)

where both p and h are pressure dependent functions. Any iteration requires a starting guess and a
feedback mechanism. Here. the starting guess for pressure is the value at time, t: P'. Feedback in the
Newton-Raphson scheme is generated by using an older value of pressure, p'.", to estimate slopes. Since
the slope, ah/ap, was readily available from the rate method, we chose to USe this slope to guide
feedback. Thus, in the comparison of methods, we have borrowed from the rate meLltod to enhance the
normal method. 11J.is provides a stronger test of the rate method.

Thus we can now generate our next pressure guess from:
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Pnew = Pguess +

h-h
~*ADJ
ahlap

5-4

(4)

where h is the known value ofh at t+Llt and h." is the estimated h based on the guessed pressure as
discueed in detail in chapter 4. ADJ is an adjustment factor E[O, I], to allow experimentation with the
amount of feedback. 1bis iteration on pressure continues until a convergence criteria, P=, is satisfied.
The converged pressure is used in the outer loop in the momentum equation and the time can be
advanced one time step. Figure 5.2 summarizes the logic flow.

5.3.2 Rate Method

The rate method obtains the value of pressure at time, t+Llt, directly from the rate equation as is done for
the conservation equations. Equation 27 of chapter 4, gives the rate of change of pressure which can be
solved simultaneoU3ly with the conservation equations if substitutions for dM/dt and dHfdt are made,
leading to:

: Au + b

where II = {M, HI. P" \Y, M,. H" P,} .
Thus:

P'.'''' p' A [ 1I = i + ut Au + b.. j

No inner iteration is required, as shown in Figure 5.3.

(5)

(6)

One problem with this approach is that the pressure may drift away from a value consistent with the mass
I and energy. 1bis problem does not arise with the conservation equations because the equations are,

conservative in form, by design. It is not possible to cast the rate form of the equation of state in
conservative form since pressure is simply not a conserved property. We can surmount the drift problem
by using the feedback philosophy of the normal method. Thus the new pressure is given by:

t+dt t h-hest
p : P + Llt[Au + b] + --*ADJ (7)" , ahlap

1bis correction term uses only readily available information in a non-iterative manner.

In essence. the main effective difference between the normal and rate method is that during the time step
between t and t+Llt the normal method employs parameters such as density, quality etc. derived from the
pressure at time. t+Llt. whereas the rate form employs parameters derived from the pressure and rate of
change of pressure at time. t. n.c l10rmal method is not necessarily more accurate, it is simply forcibly
implicit in its treatment of pressure. The rate method can be implicit (as we shall see) but it need not be.
Without experimentation it is not evident whether the necessity of iteration in the normal method is
outweighed by the possible advantages of the implicit pressure treatment.

The next sections tests these issues with numerical experiments.

5.3.3 Comparison

O;\TEACH\Thai-HTS2'daapS.wp8 Decealbet 21, 1991 '4:4S
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The two node, one link nUDericai case under consideration is summarized in figure 5.1. Perhaps the most
startling difference between the normal and rate methods is the difference in programming effort. The
rate form was found to be extremely easy to implement since the equation form is the same as the
continuity equations. The normal method took roughly twice the time to implement since separate
control of the pressure logic is required. lbis arises directly from the treatment ofpressure in the normal
method: it is the odd man out.

The second startling difference was ease of execution of the rate form compared to the normal form. The
normal form required experimentation with both the pressure convergence tolerance, P'rr> and the
adjustment factor, ADJ, since the solution was sensitive to both parameters. The rate method contains
only the adjustment factor ADJ. The first few runs of the rate method showed that since the correction
term for drift (h-h..J/(ah/c3p) is always several orders of magnitude below the primary update tenn, At {A
u + b}, the solution was not at all sensitive to the value ofADJ. Thus the rate method proved easier to
program and easier to run than the normal method.

We look at the number of iterations required for pressure convergence as a fimction of P", and ADJ for
the normal method without regard to accuracy. For a At of0.0 Isec, P",= 10-3 (fraction of the full scale
pressure of 10 MPa), the effect ofADJ is seen in figure 5.4. lbis result is typical: an adjustment factor of
I gives rapid convergence (one or two itentions) except where very large pressure changes occur. For
the case ofvery ~apid changes, the full feedback (ADJ = 1) causes overshoot_ Overall, however, the tirM
spent for pressure calculation is about the same, independent ofADJ.

Allowing a larger pressure error had the expected result of reducing the number of iterations needed per
routine call. But choosing a smaller time step (say .001) did not have a drastic effect on the peak
interations required. The rate metllod, of course, always used I iteration per routine call &nd the
adjustment factor ADJ was found to be unimportant since the drift correction factor amounted to no more
than I% of the total pressure update term.

The integrated error for both methods is shown in figure 5.5. Both methods converge rapidly to tlle
benchmark. The value of P'" is not overcritical. A value of P", consistent with tolerances set for other
simulation variables is recommended. The time spent per each iteration is roughly comparable for both
methods. The main difference is that the rate method requires the evaluation of the F fimctions over and
above the property calls common to both methods. lbis minor penalty is insignificant in all cases studied
since the number of iterations / call dominated the calculation time.

In SUfllmary, to this point, the rate method is easier to implement, more robust and is equal to the normal
method at worst. more than 20 times faster under certain conditions. We now look at incorporating a
variable time step to see how each method compares.

Typical variable time step algorithms require some measure of the rate of change of the main vanables to
guide the At choice. The matrix equation, equation I, provides the rates that we need. Since the rate
method incorporated the pressure into the u vector, the rate of change of pressure is immediately
available. For the normal method, the rate of change of pressure has to be estimated from previous
history (which is no good for predicting the onset of rapid changes) or by trial and error. The trial and
error method employed here is to calculate the At as the minimum of the time steps calculated from:

D:\TEACH\Tbai-HTS2\cbapS.wpl December 2&. 1997 I·US
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(8)
(fractional tolerance)x(scale factor for u;)

au/at
TIlls restricts At so that no parameter changes more than the prescribed fraction for that parameter. TIlls
can be implemented in a non-iterative manner for the rate method. However, for the normal method, the
above minimum At based on u is used as the test At for the pressure routine and the rate of change of
pressure is estimated as:

pt+41 _ pi

At
(9)

The At is then scaled down if the pressure change is too larg~ for that iteration. Then the new At is test~d

to ensure that it indeed satisfies the pressure change limit. TIlls iteration loop has within it the old inner
loop.

It is expected then, th~t the normal method will not perform as well as the rate method primarily because
of the "loop within a loop" inherent in the normal method as applied to typical system simulation codes.

A number of cases were studied and the results of the normal method were compared to the rate method.
The figure of merit was chosen as

10,000F.O.M. = -------,----,--,--
(integrated error)x(total pressure routine time)x(No. of adjustable parameters)

(10)

Thus, an accurate, fast and robust method achieves a high figure ofmerit. Some results are listed in
table5.1. Derating a method with more adjustable parameters is deemed appropriate because of the figure
ofmerit should reflect the effort involved in using that method. On average, about 6 runs of the normal
method. with various P= and ADJ were needed to scope out the solution field compared to 1 run for the
rate method. Thus a derating of 2 is not an inappropriate measure of robustness or effort required.

The results indicate that the rate method is a consistently better method than the normal method in terms
of numerical performance. We see no reason why this improvement would not exist for any thermal
hydraulic system in which pressure field determination is required.

Next we briefly discuss implicit numerical schemes.

, J
,~

The nod al equations are:
dM,

dt
-Wand

-h,W and

dM,
dt

~
dt

+W

+~W

(II)

(12)
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<1M .dH
F --'+F --'

dP, I dt ' dt

dt Ml. +Mt, ,

Considering just the flow and pressure rate equations, we have (after substiruting in for dM/dt and
dH/dt):

5-7

(13)

and

dW

dt

A
-(P,-P,)
L -

AKIWIW
L

(14)

X

dP, . dP,
- = -X Wand
dt' dt

where X, and X, are> 0 and are given by:

Ml. +Mt,

evaluated at the local property values of nodes I and 2.

Employing the fully implicit scheme, the difference equations are cast

\,,"6' V" 'A A_"__-_'_ _(p,"6'_p~'6') __KIW'IW'-~'

ilt L - L

(15)

(16)

( 17)

( 18)

Collecting terms and solving for the new flow:

W,·6i = [1+~KIWllilt + ~(X,+X,)tHf[\V' + ~(p;,-p,t}6.t] ( 19)

".j

Thi5 is the implicit time advancement algorithm employing the rate form of the equation of state. For the
normal method. the pressure rate equation in terms offiow (i.e .. equation 18) is not available to allow an
implicit formulation of the pressure. Consequently, the implicit time advanGement algorithm for the
normal method is:

To appreciate the difference between equations 19 and 20, consider the eigenvalues and vectors of
au(t)
-- = A(u,t)u(t) (21)

at

(fwe assume. over the time step under consideration, that A = constant and has distinct eigenvalues, then
the solution to equation 21 can be written as:

D-'TJ::ACH\TIlaj·HTS2'.:Ir..p5 "'p3 DeceJtlbeor 29, 1997 I UO
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u(t)
N
~ (lIt
LJ u,e
~"'-I

5-8

(22)

where u, = eigenvectors
a, = eigenvalues.

It can be shown that for the explicit formalism, the nwnerical solution is equivalent to:
N

u ..." = L (I +a,at)u,
f=l

while the implicit fonn is:

(23)

(24)

N
~ u,

u t.-at = L-
,_, (I-a,at)

The eigenvalues can often bc large and negative. Thus, at some Llt, the factor (I+a,.6.t) can go negative in
the explicit solution causing each subsequent evaluation of u to oscillate in sign and go unstable. For the
implicit method, the contributions due to iarge negative eignevalues decays away as at -~. Thus the
implict formalism tend to be very well behaved at large time steps. Positive eigenvalues, by a similar
argwnent pose a threat to the implicit form. However, this is not a practical problem because a,at is kept
«I for accuracy reasons. Thus, as long as the solution algorithm contains a check on the rate ofgrowth
or decay (effectively the dominant eigenvalues) then the implicit form is well behaved.

With this digression in mind. we see that the implicit rate formalism (equation 19) h2s more of the system
behaviour represented implicitly than the normal method (equation 20). Thus, we might expect the rate
from to be more stable than the normal form. Indeed, this was found to be the case as shown in figure
5.6. For a fixed and large time step (O.lsec.) the normal method showed the classic numerical instability
due to the explicit pressure treatment. The rate form is well damped and very stable, showing that lhis
method should permit the user to "calculate through" pressme spikes if they are not of interest.

5.4 Numerical Investigations: a Practical Case

The comparison between the normal and rate methods is extended to a practical application where a two
node homogeneous model is used to simulate a transient of a small pressUrizer operating at near­
atmospheric pressure. The procedure is briefly described in the following [SOL85].

Figure 5.7 illustrates the problem. Steam and stratified liquid water in the pressurizer are schematically
shown as twl' control volumes (nodes). The nodal fluids are assumed to be at saturated two-phase
conditions corresponding to the pressure at their respective control volumes. The overall boundary
conditions to the system are the steam bleed flow at the top of the pressurizer, the flow into and out of the
pressurizer through the surge line, heat input from heaters at the bottom of thp. pressurizer and heat loss
to pressurizer wall.

The rate of change of mass, M s in the steam control volume and M l in the liquid control volwne, can be
expressed by the following:

dM,

dt
(25)

D:\fEACHlrhai-KTS2\dL1p.s."1'I ~2"1997 IH-S
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dML

dt
(26)

')
..•

where WSTB is the steam bleed flow, WSRL is the surge line inflow, WCI is the interface condensation rate
at the liquid surface separating the steam control volume from the liquid control volume, WEI is the
interface evaporation rate at the same liquid surface, WCD is the flow of condensate droplets (liquid
phase) from the buik of the steam control volume toward the liquid control volume, and WOR is the rising
flow ofbubbles (gas phase) from the bulk of liquid volume toward the steam volume.

The rate of change of energy in the two control volumes ca.., be expressed by the rate of change in the
total enthalpy, Hs and HL, in the steam and liquid control volumes re,;pectively:

dRs ~
dt ; -Wsmhg;;r-WcohfST-WnhgST+WFlh'LQ +WBRhgLQ -Qws +QTR -(I-P\(l-o)QCOND +QEVPR] (27)

where hSRL is the specific enthalpy of the fluid in the surge line, ~T and %T are respectively the
saturated gas phase specific enthalpy and the saturated liquid phas~ specific enthalpy in the steam control
volume, hp.Q and ~Q are respectively the saturated gas phase specific enthalpy and the saturat~d liquid
phase specific enthalpy in the liquid control volume, Qws and QWL are the rate ofheat loss to the wall in
the steam control volume and in the liquid control volume respectively, QTR is the heat transfer rate from
the liquid control volume to the steam control volume due to any temperature gradient, excluding those
due to interface evaporation and condensation; QCDND is the rate of energy released by the condensing
steam to both the steam and liquid control volumes during the interface condensation process and QEVPR
is rate of energy absorbed by the evaporating liquid from both the steam and liquid control volumes
during the interface evaporation process. The constant, P, represents the fraction of these energies
distributed to or contributed by the liquid control volume. The ratio Ii represents the portion of energy
released during the interface condensation that is lost to the wail.

The calculation of swelling and shrinking of control volumes is only done for the liquid control volume
and the volume in t.....e steam control volumes will be related to the volume in the liquid control volume,
Vu as:

(29)

The swelling and shrinking of the liquid control volume as well as values ofWsTB, WSRL' WCI ' WE" Wen,
WBO' Qws, Q.N!.' Q'"R' QpWR' P and Ii are calculated using analytical or empirical constitutive equations.
The majority of these parameters depend directly or indirectly on pressure. Any inaccurate prediction of
pressure during a numerical simulation will result in severe numerical instability. Hence the above
problem is a good testing ground for comparing the performances of the two methods.

During the test simulation, the pressurizer is initialiy at a quasi - steady state. The steam pressure is at
96.3 kPa. The steam bleed flow, WSTB, heater power QpWR and heat losses QWL and Qws are at their
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quasi-steady values, maintaining the saturation condition of the pressurizer. At time = II sec., the steam
bleed valve is closed and WSTB drops to zero while QpWR is increased to a fixed value of 300 Watts. At
time = 16 sec., the steam bleed valve is reopened and its set point set at 80 kPa.

Since the thermodynamic properties in the steam control volume and the liquid control volume are
functions ofPs and PL(pressures of the respective control volumes), there are seven unknowns from
equations 21 to 25, namely: Ms. ML, Hs, HL, Vs (or Vd, Ps and PL' Adding two equations of state, one

for each control volume, will complete the equation ,set:M

s

, H

S

)

Ps = fn(ps,hs) = (30)
Vs Ms

PL = fn(PL,hL) = j ML, HL) (31)
"\ VL ML

Both the normal iterative mcthod and the rate method are tested to solve Equations 26 and 27. The
following observations are made:
I. Using the normal method, the choice of adjusting P to converge on h given P or converging on P

given h is found to be very important in providing a stable numerical result. At time step = 10
msec, no complete simulation result can be generated when P was the adjusted variable. An
explanation of this can be given by referring to G,(P,x), or ap/op, This faclor is proportional to
the square of [x v.(P) + (l-x)v,(P)]. However, the direction ofchange in the saturated gas phase
specific volume with pressure is opposite to that of saturated liquid phase specific volume:

dvJdP>O
dv/dP<O

Therefore, a fluctuation in the value ofpressure during an iteration process will amplify the
fluctuation in the value of predicted density when that method is used;

2. Using enthalpy as the adjusted variable to converge on P, simulation results can be generated if
an error tolerance E of less than 0.2% is used. The error tolerance is defined as:

ABS(h-h. )
E = cstnnatc X I00%

h

Figure 5.8 shows the transient ofPLand Ps for E = 0.2%. Unstable solutions result for E higher
than 0.2%. The average number of iteration is found to depend on the error tolerance as shown
in figure 5.10.

1. On the other hand, the perfo:mance of the rate method is much more convincing in both accuracy
and efficiency. The transient ofPLand Ps predicted using the rate method is shown in Figure 5.9.

5.5 Discussion And Conclusion

The rate form is a cogent expression of the equation of state that is distinct from the normal algebraic
form. The essential difference is that the rate form expresses the relationship between the rates ofchange
of the state variables, while the normal form relates the static values of the state variables. Although this
is stating the obvious, the change in viewpoint is revealing.

No barrier is perceived to applying the rate form to the multi-node/link case, to the distributed form of
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the basic equations, and to eigenvalue extraction (numerical or analytical).

5-11

,
••,) Although we have not made use ofit in this work, the non-equilibrium form (equations 4.42 and 4.43) is

provocative. It entices one to view the non-equilibrium situation as the essentially dynamic situation that
it ;s and helps to focus our attention on the thermal relaxation. Given the temperature rate equations, the
non-equilibrium situation should be easy to incorporate without a major code rewrite.

We conclude by restating our major findings. The rate method offers many advantages:
I) It is more intuitive for system work. It permits a proper focus on the two main actors, flow and

pressure.
2) The same form is appropriate for eigenvalue extraction as well as numerical simulation. This

extends the usefulness of coding.
3) Programs are easier to implement.
4) Programs are more robust and require less hand holding.
5) Time step control and detection of rapid changes (like phase changes) is improved.

Overall the method is usually faster and more accurate. Time savings peaked at a ratio of 26 for the cases
considered.

)
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5.6 Exerci'les

5-12

".i'

1. Consider 2 connected volumes of water with conditions as shown in figure 5.1 Model this with 2
nodes and I link. Use the supplied code (2node.c) as a guide.
a. Solve for the pressure and flow histories using the nonnal iterative method for the

equati.on of state,
b. Solve for the pressure and flow histories using the non-iterative rate method.
c. Compare the two solutions and comment.

2. Vary the initial conditions of question I so as to cause void collapse in volume 2 during the
transient. What problems can you anticipate? Solve this case by both methods.
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Table 5.1 Figure of Merit Comparisons of the Normal and Rate Forms of the
'.~ Equation of State for Various Convergence Crileria (Simple Case).Jj

Conver'lence Pre.lure
(fraction Cull scale) lntegral routine RelaLive-

CaM Method Owran Pre••un ADJ e...... time AP' FOM' FOM

1 Prate 0.01 0.5 180.39 Z4 I 2.31

2 Paorm 0.01 0.01 0.5 597.61 25 2 0.33 6.90

3 Prate 0.001 0.5 Z1.13 96 4.93

4 Pnorm 0.001 0.001 0.5 79.819 119 2 0.53 9.37

5 Paonn 0.00l 0.00001 1 n.808 246 2 0.89 5.53

8 P ..."" 0.001 0.0001 I n.781 2%9 2 0.96 5.14

7 PaeMll 0.001 0.001 1 n.761 140 2 1.57 3.14

8 P""MIl 0.001 0.01 1 n847 128 Z 1.71 2.88

9 Prate 0.0001 0.5 0.534 i3E 1 ZS.44

10 P ""MIl 0.0001 0.0001 U 2.2.5~6 852 Z 2.60 9.17

11 P ....rm 0.0001 0.0001 1 0.4907 894 2 IHO Z.23

, AI' = .. ofadjustable~ten
FOM = Fieur_ of merit
Rel.tive roM = eFOM {or rate method.1/(FOM (or normal method}

bamIlJt l!oU.J. ~ I.iIl!<

Vlllu_l~l I.. 1.' D'--.t 1.1 '.\

Pr-.IIn IMP.., 10.0 ,.• L-ftCth 111II1 \.'

M... (kl'l 500.0 100.0 0.001

k \.'

K_ {NLlln.JD + Itl

....'.

NODE 1

Figure 5.1 Simple 2-node. I-link system.

NODE 2
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Initialize
Paramelars

Updale Section

III :>"1. yl +"1 (~!! + i!l
Where Il = {M,. H,. W. M:z, H2}

Pressure Calculation

Pnew = Pguess + h·-hcalc .ADJ
ohlClP
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OUTER
LOOP

INNER
LOOP

NO

?

YES

1=1+"1

NO

YES

Figure 5.2 Program flow diagram for the normal method.
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Initialize
Parameters

Update Section
yl+L>I= ~i+ At (6~ +~)

Where ~ ={M1• H 10 Pl. W. M 2• H2o P2}
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NO

YES

Figure 5.3 Program flow diagram for the rate method.
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, ADJ .1.0 ,

ADJ. 0.5

/'
---.......-... -------- -- -----

'...... 28

24

20

ffi 16
m

~ 12
z

8

4

o
o 0.2 0.4 0.6

TIME (sec)

0.8 1.0

Figure 5.4 Nwubec of iterations per pressure routine call for the normal
method with a time step of0.0 1 seconds and a pressure error tolerance of
0.001 of full scale (10 mPa).

0.01
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Method

\
Normal
Method

ADJ.l
Perr.10·2 & 10-3

ADJ= .5
Perr= 10-2

0.005

TIME STEP (sec)

Normal
1----- Method -l---J....------;;L,,.L------J

ADJ= .5
Perr.l0-3

300
.....
C>
~--a: 2000
a:
a:w
~ 1CO0
-!
L!-

0
0.001

Figure 5.5 Integrated flow error for the rate method and the normal method for
various fixed time steps, convergence tolerances and adjustment factors.
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The Rate Form ofthe Equation ofState

en ,z 20 -0 I

i= /
I

<C /a: 15 - ,
W I

!:::
,
/

LI. I
I

0 10 - I,
a: I
W I
a:I I

:E 5 - ........ I
-..... l:l -.. .-

Z -.JI! • '"--e----
0 I I

0.0 0.1 0.2

ERROR TOLERANCE (%)

Figure 5.10 Averaged number of iterations per pressure routine call
for the nonnal method in simulating pressurizer problem.

5-19

--~


	Chapter 5 The Rate Form of the Equation of State
	5.1 Introduction
	5.1.1 Chapter Overview
	5.1.2 Learning Outcomes
	5.1.3 Chapter Layout

	5.2 The Rate Form
	5.3 Numerical Investigations: a Simple Case
	5.3.1 Normal Method
	5.3.2 Rate Method
	5.3.3 Comparison

	5.4 Numerical Investigations: a Practical Case
	5.5 Discussion and Conclusion
	5.6 Exercises

	Tables
	5.1 Figure of Merit Comparisons of the Normal and Rate Forms of the Equation of State for Various Convergence Criteria (Simpl

	Figures
	5.1 Simple 2-node, 1-link system
	5.2 Program flow diagram for the normal method
	5.3 Program flow diagram for the rate method
	5.4 Number of iterations per pressure routine call for the normal method with a time step of 0.01 seconds and a pressure erro
	5.5 Intergrated flow error for the rate method and the normal method for various fixed time steps, convergence tolerances and
	5.6 Flow vs. time for the implicit forms of the normal and rate method
	5.7 Schematic of control volumes in the pressurizer
	5.8 Pressurizer's pressure transient for the normal method with error tolerance of 0.2%
	5.9 Pressurizer's pressure transient for the rate method
	5.10 Averaged number of iterations per pressure routine call for the normal method in simulating pressurizer problem


